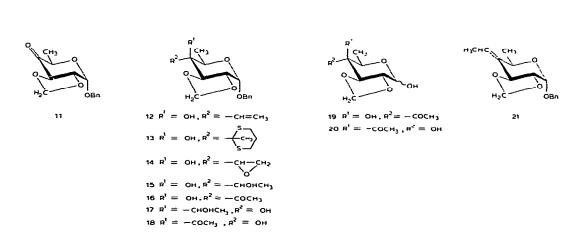
Preliminary communication

Stereoselective synthesis of methyl 4-C-acetyl-6-deoxy-2,3-O-methylene-D-galactonate and -D-gluconate. Determination of the D-galacto configuration of methyl eurekanate by synthesis

JUJI YOSHIMURA and MASAFUMI MATSUZAWA

Laboratory of Chemistry for Natural Products, Faculty of Science, Tokyo Institute of Technology, Nagatsuta, Midoriku, Yokohama 227 (Japan)

(Received July 31st, 1980; accepted for publication, August 14th, 1980)


Oligosaccharide antibiotics, everninomicins¹ and flambamycin² of the orthosomycin family contain a characteristic 4-C-substituted 2,3-O-methylene-aldonolactone which is attached at a terminal position by an acetal interlinkage. The configuration of the lactone in everninomicins B and D was determined by X-ray analysis³ and characterized as the corresponding methyl aldonate⁴. Recently, we have synthesized the methyl ester, namely, methyl 6-deoxy-4-C-(hydroxymethyl)-5-O-methyl-2,3-O-methylene-L-idonate (1) from L-arabinose⁵. As the configuration of methyl eurekanate (methyl 4-C-acetyl-6-deoxy-2,3-O-methylenehexonate) from flambamycin was ambiguous, the D-galacto (2) and D-gluco (4) diastereomers were stereoselectively synthesized from D-glucose, on the assumption that the configurations of the carbon atoms bearing the characteristic 2,3-methylenedioxy group in 1 and methyl eurekanate are the same. As a result, the configuration of methyl eurekanate has now been determined to be D-galacto.

Treatment with sodium hydride of benzyl 4,6-O-benzylidene-\alpha-D-glucopyranoside in N,N-dimethylformamide and dichloromethane⁶ and separation of the products on a column of silica gel using 8:1 hexane-ethyl acetate, gave the corresponding 2.3-Omethylene derivative (5), m.p. $107-108^{\circ}$, $[\alpha]_D + 123^{\circ}$ (c 1.0, CHCl₃), and two dimers, 6, m.p. $111-113^{\circ}$, $[\alpha]_{D} +171^{\circ}$ (c 0.98, CHCl₃), and 7, m.p. $114-116^{\circ}$, $[\alpha]_{D} +196^{\circ}$ (c 0.8, CHCl₃) in 43, 6.2, and 7.2% yield, respectively. The configurations of 6 and 7 were deduced from the methylene proton signals in their ¹H-n.m.r. spectra (6: δ 4.75 and 4.96, ABq, J 7.0 Hz; 7: δ 4.70 and 4.90, each s). Partial hydrolysis of 5 with 70% acetic acid for one day at room temperature gave the O-de benzylidenated product 8, m.p. $108-110^{\circ}$, $[\alpha]_D + 176^{\circ}$ (c 1.0, CHCl₃) in 64% yield. Monotosylation of 8 in pyridine with p-toluenesulfonyl chloride gave the 6-O-tosyl derivative (9), m.p. 80-82°, [\alpha]_D +78.9° (c 1.2, CHCl₃), in 81% yield. Reduction of 9 in dimethyl sulfoxide with sodium borohydride gave the 6-deoxy derivative (10) as a syrup, $[\alpha]_D + 154^\circ$ (c 0.85, CHCl₃), in 81% yield. Oxidation of 10 with dimethyl sulfoxide-trifluoroacetic anhydride⁷ gave a quantitative yield of benzyl 6-deoxy-2,3-O-methylene-α-D-xylo-hexopyranosid-4-ulose (11) as a syrup: 1 H-n.m.r. data (CDCl₃): $\delta \sim 7.38$ (m, 5 H, Ph), 5.47 (d, 1 H, $J_{1,2}$ 3.0 Hz, H-1), 5.19 and 5.10 (each d, 2 H, J_{gem} 0.8 Hz, OCH₂O), 4.82

0008-6215/80/0000-0000/\$ 02.25, © 1980 - Elsevier Scientific Publishing Company

(s, 2 H, CH₂Ph), 4.70 (dd, 1 H, $J_{3,5}$ 1.0 Hz, H-3), 4.12 (dq, 1 H, $J_{5,6}$ 3.5 Hz, H-5), 3.63 (dd, 1 H, $J_{2,3}$ 10.5 Hz, H-2), and 1.35 (d, 3 H, H-6). Syrupy 11 was used for the next reaction without purification.

$$CO_2Me$$
 CO_2Me
 C

Reaction of 11 with vinylmagnesium bromide in oxolane (tetrahydrofuran) at room temperature, and separation of the products on a column of silica gel with 4:1 hexane-ethyl acetate, gave benzyl 6-deoxy-2,3-O-methylene-4-C-vinyl-α-D-galactopyranoside (12) as a syrup, $[\alpha]_D + 141^\circ$ (c 6.8, CHCl₃), and the 4-epimer of 12 as a syrup, [α]_D +167° (c 2.3, CHCl₃) in the ratio of 15.9:1 in 55.4% yield. These configurations were deduced from the chemical shifts of the α -carbon atoms in the vinyl groups: ¹³Cn.m.r. data, 12, 137.6; 4-epimer, 132.7 p.p.m. (ref. 8). A similar reaction of 11 with 2lithio-2-methyl-1,3-dithiane9 gave, exclusively, the corresponding D-galacto derivative (13) as a syrup in 40% yield, $[\alpha]_D + 116^\circ$ (c 0.8, CHCl₃); ¹³C-n.m.r. of C-2 of the 1,3-dithianyl group: 58.36 p.p.m. (ref. 10). Epoxidation of 12 with m-chloroperoxybenzoic acid in 1,2-dichloroethane at 80° gave a mixture of the corresponding (S)- and (R)epoxides (14) in 46% yield; this was converted into the 4-C-acetyl derivative (16), a syrup, $\{[\alpha]_D + 135.9^\circ (c 1.3, CHCl_3); ^1H-n.m.r. data (CDCl_3): \delta 7.50-7.26 (m, 5 H, Ph),$ 5.36 (d, 1 H, $J_{1,2}$ 3.0 Hz, H-1), 5.14 and 5.04 (each d, 2 H, J_{gem} 1.0 Hz, OCH₂O), 4.78 and 4.74 (ABq, 2 H, J 12.0 Hz, CH₂Ph), 4.31 (d, 1 H, J_{2.3} 10.0 Hz, H-3), 4.04 $(q, 1 H, J_{5.6} 6.0 Hz, H-5), 3.87 (dd, 1 H, H-2), 3.87 (s, 1 H, OH), 2.26 (s, 3 H, COCH₃),$ and 0.98 (d, 3 H, H-6), via the corresponding diols* (15) in 55% overall yield, by successive reduction with lithium aluminum hydride and oxidation with N-chlorosuccinimide and dimethyl sulfide¹¹. Compound 16 was also obtained, in 50% yield, from 13 by treatment with mercuric oxide and mercuric chloride in aqueous methanol, Hydrogenation of 16 in the presence of palladium-on-charcoal gave the free sugar (19) as a syrup, $[\alpha]_D - 45.2 \rightarrow -48.5^{\circ} (c 1.5, EtOH; 8 h)$, in 96% yield.

On the other hand, reaction of 11 with 1.5 molar equivalents of ethyltriphenyl-phosphonium bromide and butyllithium in ether gave a 1:1.6 mixture of the (E)- and (Z)4-C-ethylidene derivatives (21) in 65% yield. Compound 21 was exclusively converted into the corresponding 4-C-acetyl derivative (18) having the D-gluco configuration 12 {m.p. $88-89^{\circ}$, $[\alpha]_D$ +152.7° (c 2.6, CHCl₃); 1 H-n.m.r. data (CDCl₃): δ 7.50–7.30 (m, 5 H, Ph), 5.40 (d, 1 H, $J_{1,2}$ 3.0 Hz, H-1), 5.10 and 5.05 (each d, 2 H, J_{gem} 1.0 Hz, OCH₂O), 4.77 and 4.70 (ABq, 2 H, J 12.3 Hz, CH₂Ph), 4.24 (s, 1 H, OH), 4.10 (d, 1 H, $J_{2,3}$ 10.0 Hz, H-3), 3.95 (dd, 1 H, H-2), 3.79 (q, 1 H, $J_{5,6}$ 7.0 Hz, H-5), 2.26 (s, 3 H, COCH₃), and 1.07 (d, 3 H, H-6)} via the corresponding diols* (17), in 50% overall yield, by oxidation with 4-methylmorpholine N-oxide and a catalytic amount of osmium tetraoxide, followed by oxidation as already described. Hydrogenation of 18 in the presence of palladium-on-charcoal gave the corresponding, free sugar (20) as a syrup in 96% yield, $[\alpha]_D$ –12.1 \rightarrow –15.3° (c 1.7, EtOH; 8 h).

Thus obtained, 19 and 20 were oxidized with bromine in the presence of barium carbonate in water, and the resulting barium aldonates were treated with Amberlite IR-120 ion-exchange resin in methanol, to give the corresponding methyl aldonate; $2,[\alpha]_D$ -52.1° (c 0.6, EtOH), and 4, $[\alpha]_D$ -39.8° (c 0.8, EtOH), as syrups, in 37 and 36% yield, respectively. It was found that the ¹H- and ¹³C-n.m.r. parameters of 2 were completely identical with those reported² for methyl eurekanate, $[\alpha]_D$ -55.2° (EtOH). Moreover, the ¹H-n.m.r. parameters of the monoacetate (3; m.p. 85-86°) of 2, obtained

^{*}For the examination of stereoselectivities in the reactions used, the (S)- and (R)-1-hydroxyethyl derivatives were separated. The results will be reported elsewhere.

by the usual acetylation of 2 with acetic anhydride in pyridine, were identical with those reported for methyl eurekanate monoacetate, m.p. 87°, and no depression of the melting point was observed on admixture of 2 with an authentic sample. From these results, the configuration of methyl eurekanate was determined to be D-galacto**.

ACKNOWLEDGMENTS

The authors thank Prof. W. D. Ollis of Sheffield University, England, for a gift of methyl eurekanate monoacetate, and Prof. W. Keller-Schierlein of the Eidgenössische Technische Hochschule, Zurich, for kindly providing information on his results. This work was carried out with a Scientific Research Grant-in-Aid (No. 347023) of the Ministry of Education, Science, and Culture, Japan.

REFERENCES

- 1 A. K. Ganguly, Top. Antibiot. Chem., 2 (1978) 59-98.
- 2 W. D. Ollis, C. Smith and D. E. Wright, Tetrahedron, 35 (1979) 105-127.
- 3 A. K. Ganguly, O. Z. Sarre, A. T. McPhall, and R. W. Miller, J. Chem. Soc. Chem. Commun., (1979) 22-24.
- 4 A. K. Ganguly, O. Z. Sarre, D. Greeves, and J. Morton, J. Am. Chem. Soc., 97 (1975) 1982-1985.
- 5 M. Matsuzawa and J. Yoshimura, Carbohydr. Res., 81 (1980) C5-C9.
- 6 J. S. Brimacombe, A. B. Foster, B. D. Jones, and J. J. Willard, J. Chem. Soc., C, (1967) 2404-2407; cf., K. S. Kim and W. A. Szarek, Synthesis, (1978) 48-49.
- 7 J. Yoshimura, K. Sato, and H. Hashimoto, Chem. Lett., (1977) 1327-1330.
- 8 K. Sato, M. Matsuzawa, K. Ajisaka, and J. Yoshimura, *Bull. Chem. Soc. Jpn.*, 53 (1980) 189-191, and references cited therein.
- H. Redlich, H.-J. Neumann, and P. Paulsen, Chem. Ber., 110 (1977) 2911-2921; H. Paulsen and V. Sinnwell, ibid., 111 (1978) 879-880.
- 10 A.-M. Sepulchre, B. Septe, G. Lukacs, and S. D. Gero, Tetrahedron, 30 (1974) 905-915.
- 11 E. J. Corey and C. U. Kim, Tetrahedron Lett., (1974) 287-290.
- 12 D. L. Walker and B. Fraser-Reid, J. Am. Chem. Soc., 97 (1975) 6251-6253.

^{**}According to information from Prof. W. Keller-Schierlein of the Eidgenössische Technische Hochschule, Zurich, he determined the D-galacto configuration of methyl eurekanate monoacetate by X-ray analysis; paper submitted to Helv. Chim. Acta.